

Characterised control valve with thermal energy meter, certified for heating applications according to MID, fulfills the requirements of EN 1434. Sensor-operated flow rate or power control, power and energy monitoring function, 2-way, internal thread, PN 25

- Nominal voltage AC/DC 24 V
- Control modulating, communicative, hybrid
- For closed cold and warm water systems
- For modulating control of air-handling and heating systems on the water side
- Ethernet 10/100 Mbit/s, TCP/IP, integrated web server
- Communication via BACnet, Modbus, Belimo MP-Bus or conventional control
- PoE (Power over Ethernet) Power supply possible
- Conversion of sensor signals

Technical data sheet

Type Overview

Туре	DN	Rp ["]	G ["]	V'nom [l/s]	V'nom [l/min]	V'nom [m³/h]	kvs theor. [m³/h]	qp [m³/h]	qs [m³/h]	qi [m³/h]	Q'max [kW]	PN
EV015R2+MID	15	1/2	3/4	0.42	25	1.5	2.8	1.5	3	0.015	350	25
EV020R2+MID	20	3/4	1	0.69	41.7	2.5	4.8	2.5	5	0.025	585	25
EV025R2+MID	25	1	1 1/4	0.97	58.3	3.5	8.1	3.5	7	0.035	815	25
EV032R2+MID	32	1 1/4	1 1/2	1.67	100	6	11.4	6	12	0.06	1400	25
EV040R2+MID	40	1 1/2	2	2.78	166.7	10	17.1	10	20	0.1	2330	25
EV050R2+MID	50	2	2 1/2	4.17	250	15	25	15	30	0.15	3500	25

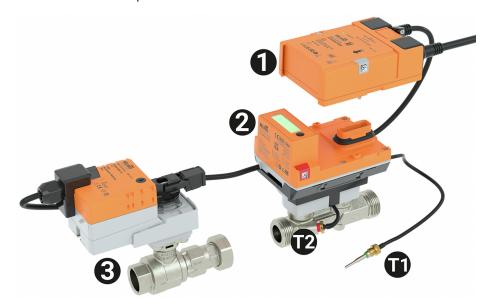
kvs theor.: Theoretical kvs value for pressure drop calculation

qp = Nominal flow

qs = Highest flow

qi = Lowest flow

Q'max = Maximum thermal output (q = qs, $\Delta\Theta$ = 100 K)


Structure

Components

The Belimo Energy Valve MID consists of a characterised control valve, an actuator and a thermal energy meter with a logic and a sensor module.

The logic module provides the power supply, the communication interface and the NFC connection of the energy meter. All MID-relevant data are measured and recorded in the sensor module. The display is also located in the sensor module.

This modular design of the energy meter means that the logic module can remain in the system if the sensor module is replaced.

External temperature sensor T1
Integrated temperature sensor T2
Logic module 1
Sensor module 2
Characterised control valve with actuator 3

Technical data

Electrical data

Nominal voltage	AC/DC 24 V
Nominal voltage frequency	50/60 Hz
Nominal voltage range	AC 19.228.8 V / DC 21.628.8 V
Power consumption in operation	4 W (DN 15, 20, 25) 5 W (DN 32, 40, 50)
Power consumption in rest position	3.7 W (DN 15, 20, 25) 3.9 W (DN 32, 40, 50)
Power consumption for wire sizing	6.5 VA (DN 15, 20, 25) 7.5 VA (DN 32, 40, 50)
Connection supply / control	Cable 1 m, 6 x 0.75 mm ²
Connection Ethernet	RJ45 socket
Power over Ethernet PoE	DC 3757 V 11 W (PD13W) IEEE 802.3af/at, Type 1, Class 3
Conductors, cables	AC/DC 24 V, cable length <100 m, no shielding or twisting required Shielded cables are recommended for supply via PoE
Battery operation	Battery buffering for 14 months in battery operation only For battery operation - Continuity of energy metering - Storage of the cumulated meter readings - no communication (except NFC) - Display function
Switching to battery operation	When the supply voltage of AC/DC 24 V or PoE is interrupted

EV..R2+MID

Data bus communication	Communicative control	BACnet IP, BACnet MS/TP Modbus TCP, Modbus RTU MP-Bus Cloud						
	Number of nodes	BACnet / Modbus see interface description MP-Bus max. 8						
Functional data	Operating range Y	210 V						
	Input Impedance	100 kΩ						
	Operating range Y variable	0.510 V						
	Position feedback U	210 V						
	Position feedback U note	Max. 1 mA						
	Position feedback U variable	010 V						
		0.510 V						
	Sound power level Motor	35 dB(A) (DN 15, 20, 25, 32, 40) 45 dB(A) (DN 50)						
	Adjustable flow rate V'max	25100% of Vnom						
	Control accuracy	±5% (of 25100% V'nom)						
	Min. controllable flow	1% of V'nom						
	Parametrisation	via NFC, Belimo Assistant App via integrated web server						
	Fluid	Water						
	Fluid temperature	-10120°C [14248°F]						
	Fluid temperature note	MID certified 15120°C						
	Close-off pressure Δps	1400 kPa						
	Differential pressure Δpmax	350 kPa						
	Differential pressure note	200 kPa for low-noise operation						
	Flow characteristic	equal percentage, optimised in the opening range (switchable to linear)						
	Leakage rate	air-bubble tight, leakage rate A (EN 12266-1)						
	Installation position	upright to horizontal (in relation to the stem)						
	Servicing	maintenance-free						
	Manual override	with push-button, can be locked						
Measuring data	Measured values	Flow Temperature						
	Behaviour at flow rate greater than qs	Limitation at 2.5 x qp						
	Dynamic range qi:qp	1:100						
	Temperature sensor T1 / T2	Pt1000 - EN 60751, 2-wire technology, inseparably connected Cable length external sensor T1: 3 m						
Heat meter	Registration	MID approval / EN 1434 DE-21-MI004-PTB010 Fluid temperature flow sensor: 15120°C Temperature range temperature sensors: 0120°C Difference range: 3100 K						
	Classification	Accuracy class 2 / environment class A						
	Classification	Mechanical environment: Class M1						
		Electromagnetic environment: Class E1						
Cooling meter	Operating range	Fluid temperature flow sensor: 550°C						
Flow measurement	Measuring principle	Ultrasonic volumetric flow measurement						

ď	Technical data sheet	EVR2+MID					
Flow measurement	Measuring accuracy flow	\pm (2 + 0.02 qp/q)% of the measured value (q), but not more than \pm 5% \pm (2 + 0.02 V'nom/V') % of the measured value (V'), but not more than \pm 5%					
	Min. flow measurement	0.5% of V'nom					
Temperature measurement	Measuring accuracy absolute temperature	± 0.35°C @ 10°C (Pt1000 EN60751 Class B) ± 0.6°C @ 60°C (Pt1000 EN60751 Class B)					
	Measuring accuracy temperature difference	±0.22 K @ ΔT = 10 K ±0.32 K @ ΔT = 20 K					
Safety data	Protection class IEC/EN	III, Protective Extra-Low Voltage (PELV)					
	Degree of protection IEC/EN	IP54 Logic module: IP54 (with grommet A-22PEM- A04) Sensor module: IP65					
	Measuring Instruments Directive	CE according to 2014/32/EU					
	Pressure equipment directive	CE according to 2014/68/EU					
	EMC	CE according to 2014/30/EU					
	Certification IEC/EN	IEC/EN 60730-1:11 and IEC/EN 60730-2-15:10					
	Quality Standard	ISO 9001					
	Mode of operation	Type 1					
	Rated impulse voltage supply / control	0.8 kV					
	Pollution degree	3					
	Ambient humidity	Max. 95% RH, non-condensing					
	Ambient temperature	-3050°C [-22122°F]					
	Storage temperature	-4080°C [-40176°F]					
Materials	Valve body	Brass					
	Flow measuring pipe	Brass body nickel-plated					
	Closing element	Stainless steel					
	Spindle	Stainless steel					
	Spindle seal	EPDM O-ring					

Safety notes

Immersion sleeve

 This device has been designed for use in stationary heating, ventilation and air-conditioning systems and must not be used outside the specified field of application, especially in aircraft or in any other airborne means of transport.

Stainless steel

- Outdoor application: only possible in case that no (sea) water, snow, ice, insolation or
 aggressive gases interfere directly with the device and that it is ensured that the ambient
 conditions remain within the thresholds according to the data sheet at any time.
- Only authorised specialists may carry out installation. All applicable legal or institutional installation regulations must be complied during installation.
- The device contains electrical and electronic components and must not be disposed of as household refuse. All locally valid regulations and requirements must be observed.

Product features

Registration

The thermal energy meter meets the requirements of EN1434 and has type approval according to the European Measuring Instruments Directive MID 2014/32/EU (MI-004).

The thermal energy meter is approved as a heat meter. In certain European countries, based on local regulations, the thermal energy meter is not approved for use as a cooling meter. In these countries, it is not legally compliant to use the thermal energy meter as a cooling meter in legal transactions. But it is possible to use the thermal energy meter as a cooling meter for 'internal use' at any time.

Data protection

Please consider the principles of data security and data privacy when using the device. This applies in particular if the device is used in residential buildings. For this purpose, the initial password for remote access (webserver) needs to be changed when configuring the device. Moreover, physical access to the device should be restricted so that only authorized persons may access the device. Alternatively, the device offers the option to permanently disable access through the NFC interface.

Mode of operation

The HVAC performance device is comprised of four components: characterised control valve (CCV), measuring pipe with volumetric flow sensor, temperature sensors and the actuator itself. The adjusted maximum flow (V'max) is assigned to the maximum control signal DDC (typically $10\ V\ /\ 100\%$). Alternatively, the control signal DDC can be assigned to the valve opening angle or to the power required on the heat exchanger (see power control). The HVAC performance device can be controlled via communicative or analogue signals. The fluid is detected by the sensor in the measuring pipe and is applied as the flow value. The measured value is balanced with the setpoint. The actuator corrects the deviation by changing the valve position. The angle of rotation α varies according to the differential pressure through the control element (see flow rate curves).

Energy metering

The thermal energy meter has a LCD display with 8 digits and special characters. The values that can be displayed are summarised in 3 display loops. The values can be displayed on the LCD display by pressing the button.

The energy meter can be parametrised as a combined heat/cooling meter via NFC and the Belimo Assistant App.

Flow measurement

The thermal energy meter measures the current flow rate every 0.1 s in mains operation and every 2 s in battery operation.

Power calculation

The thermal energy meter calculates the current thermal power based on the current flow rate and the measured temperature difference.

Energy consumption

The energy consumption can be read on the display for billing. In addition, the energy consumption data can be read out as follows:

- Bus
- Cloud API
- Belimo Cloud Account of the device owner
- Belimo Assistant App
- Integrated web server

Note: Country-specific regulations must be observed when reading.

Backup battery

The thermal energy meter is equipped with a non-rechargeable battery to bridge possible voltage interruptions for a total of 14 months.

The battery is activated when the thermal energy meter is activated and ensures that the thermal energy continues to be reliably recorded in the event of temporary voltage interruptions. While the thermal energy meter is running on the battery, the values can only be read out via the display. The thermal energy meter must not be installed in such a way that intentional voltage interruptions are possible.

PoE (Power over Ethernet)

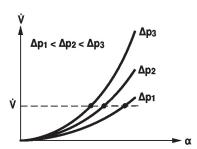
If necessary, the thermal energy meter can be supplied with power via the Ethernet cable. This function can be enabled via the Belimo Assistant App.

DC 24 V (max. 8 W) is available at wires 1 and 2 for power supply of external devices (e.g. actuator or active sensor).

Caution: PoE may only be enabled if an external device is connected to wires 1 and 2 or if wires 1 and 2 are insulated!

Commissioning report

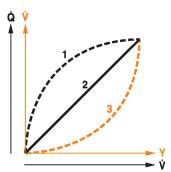
To avoid installation errors, it is recommended to have an installation and commissioning protocol issued when the thermal energy meter is newly installed or replaced. The documentation of all measuring point data, meter data, installation situation and operating conditions can be used to reliably verify the correct installation and function of the thermal energy meter. In this way, the legal certainty of subsequent service charge settlements can be additionally substantiated and tenant objections can be invalidated. The commissioning protocol of the thermal energy meter is based on the technical guideline K9 of the German Physikalisch Technische Bundesanstalt (PTB). Once the thermal energy meter has been commissioned, the commissioning protocol is saved on the Belimo cloud account of the device owner.


Spare parts

Sensor module of the thermal energy meter

MID-certified consisting of:

- 1 x sensor module including integrated temperature sensor T2 and external temperature sensor T1 $\,$
- 2 x security seals consecutively numbered (unique) with attached wire
- 1 x seal


Flow rate curves

Transmission behaviour HE

Heat exchanger transmission behaviour

Depending on the construction, temperature spread, fluid characteristics and hydronic circuit, the power Q is not proportional to the water volumetric flow V' (Curve 1). With the classical type of temperature control, an attempt is made to maintain the control signal Y proportional to the power Q (Curve 2). This is achieved by means of an equal-percentage flow characteristic (Curve 3).

Power control

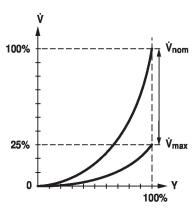
Alternatively, the control signal DDC can be assigned to the output power required at the heat exchanger.

Depending on the water temperature and air conditions, the Energy Valve ensures the amount of water V' required to achieve the desired power.

Maximum controllable power on heat exchanger in power control mode:

DN 15	90 kW
DN 20	150 kW
DN 25	210 kW
DN 32	350 kW
DN 40	590 kW
DN 50	880 kW

Control characteristics

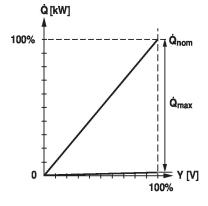

The specially configured control parameters in connection with the precise velocity sensor ensure a stable quality of control. They are, however, not suitable for rapid control processes, i.e. for domestic water control.

Definition

Flow control

V'nom is the maximum possible flow.

V'max is the maximum flow rate which has been set with the highest control signal DDC. V'max can be set between 25% and 100% of V'nom.


Definition

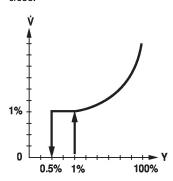
Power control

Q'nom is the maximum possible power output on the heat exchanger.

Q'max is the maximum power output on the heat exchanger which has been set with the highest control signal DDC. Q'max can be set between 1% and 100% of Q'nom.

Q'min 0% (non-variable).

Creep flow suppression


Given the very low flow speed in the opening point, this can no longer be measured by the sensor within the required tolerance. This range is overridden electronically.

Opening valve

The valve remains closed until the flow required by the control signal DDC corresponds to 1% of V'nom. The control along the flow characteristic is active after this value has been exceeded.

Closing valve

The control along the flow characteristic is active up to the required flow rate of 1% of V'nom. Once the level falls below this value, the flow rate is maintained at 1% of V'nom. If the level falls below the flow rate of 0.5% of V'nom required by the control signal DDC, then the valve will close.

Configurable actuators

The factory settings cover the most common applications.

The parametrisation can be carried out through the integrated web server (RJ45 connection to the web browser) or by communicative means.

Additional information regarding the integrated web server can be found in the separate documentation.

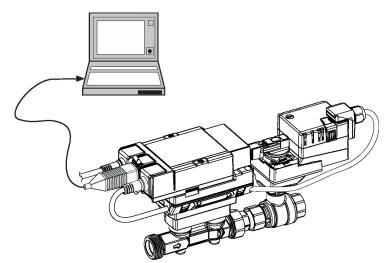
The Belimo Assistant App is required for parametrisation via Near Field Communication (NFC) and simplifies commissioning. Moreover, it provides a variety of diagnostic options.

Communication

The parametrisation can be carried out through the integrated web server (RJ45 connection to the web browser) or by communicative means.

Additional information regarding the integrated web server can be found in the separate documentation.

"Peer to Peer" connection


http://belimo.local The Notebook must be set to "DHCP". Make sure that only one network connection is active.

Standard IP address:

http://192.168.0.10 Static IP address

Password (read-only):

User name: «guest» Password: «guest»

Control signal inversion

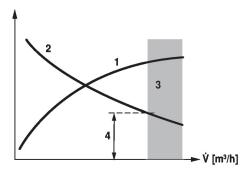
This can be inverted in cases of control with an analogue control signal DDC. The inversion causes the reversal of the standard behaviour, i.e. at a control signal DDC of 0%, regulation is to V'max or Q'max, and the valve is closed at a control signal DDC of 100%.

Hydronic balancing

Via the integrated web server, the maximum flow rate (equivalent to 100% requirement) can be adjusted on the device itself, simply and reliably, in a few steps. If the device is integrated in the management system, then the balancing can be handled directly by the management system.

Delta-T manager

If a heating or cooling register is operated with a differential temperature that is too low and thus with a flow rate that is too high, this will not result in an increased power output.


Nevertheless, heating or cooling machines must provide the energy at a lower degree of efficiency. This means, that pumps circulate too much water and increase energy consumption unnecessarily.

With the aid of the Energy Valve, it is simple to discover that operation is being carried out at a differential temperature that is too low, resulting in the inefficient use of energy.

Necessary setting adjustments can now be carried out quickly and easily at any time. The integrated differential temperature limiting offers the user the possibility of defining a low limit value. The Energy Valve limits the flow rate automatically to prevent the level from falling below this value.

The settings of the Delta-T manager can be made either directly on the web server or via the Belimo Cloud a direct analysis of the Delta-T behavior is carried out by Belimo experts.

Power output of the heating or cooling registers 1 Diff. temperature between supply and return 2 Loss zone (heating or cooling register saturation) 3 Adjustable minimum differential temperature 4

Combination analogue - communicative (hybrid mode)

With conventional control by means of an analogue control signal DDC, the integrated web server, BACnet, Modbus or MP-Bus can be used for the communicative position feedback.

Power and energy monitoring function

The HVAC performance device is equipped with two temperature sensors. A sensor (T2) is already installed at the thermal energy meter and the second sensor (T1) must be installed onsite on the other side of the water circuit. The two sensors are enclosed with the system already wired. The sensors are used to record the fluid temperature of the supply and return lines of the consumer (heating/cooling coil). As the water quantity is also known, thanks to the flow measurement integrated in the system, the power released from the consumer can be calculated. Furthermore, the heating/cooling energy is also determined automatically by means of the evaluation of the power over time.

The current data, e.g. temperatures, volumetric flow volumes, exchanger energy consumption etc. can be recorded and accessed at any time by means of web browsers or communication.

Data recording

The recorded data (integrated data recording for 13 months) can be used for the optimisation of the overall system and for the determination of the performance of the consumer (heating/cooling coil).

Download csv files through web browser.

Belimo Cloud

Additional services are available if the Energy Valve is connected to the Belimo Cloud: for instance, several devices may be managed via Internet. Also, Belimo experts may help analyse the delta-T behaviour or provide written reports about the Energy Valve performance. Under certain conditions, the product warranty according to the applicable Terms and Conditions of Sale may be prolonged. The "Terms of Use for Belimo Cloud Services" in their currently valid version apply to the use of Belimo Cloud services. Further details may be found under [www.belimo.com/ext-warranty]

Note: The connection to the Belimo Cloud is permanently available. Activation takes place via web server or Belimo Assistant App.

Manual override

Manual override with push-button possible (the gear train is disengaged for as long as the button is pressed or remains locked).

High functional safety

The actuator is overload protected, requires no limit switches and automatically stops when the end stop is reached.

Grommet for RJ connection module with clamp

Security seal with wire, Set of 2 pcs.

Description

Type

A-22PEM-A04

A-22PEM-A03

Scope of delivery

Scope of delivery

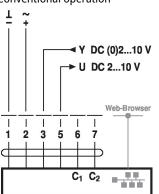
	Converter Bluetooth / NFC	ZIP-BT-NFC		
Tools	Description	Туре		
	Pipe connector for ball valve DN 50	ZR2350		
	Pipe connector for ball valve DN 40	ZR2340		
	Pipe connector for ball valve DN 32	ZR2332		
	Pipe connector for ball valve DN 25	ZR2325		
	Pipe connector for ball valve DN 20	ZR2320		
	Pipe connector for ball valve DN 15	ZR2315		
	Valve neck extension for ball valve DN 1550	ZR-EXT-01		
	Pipe connector DN 50 Rp 2, G 2 1/2	EXT-EF-50F		
	Pipe connector DN 40 Rp 1 1/2, G 2	EXT-EF-40F		
	Pipe connector DN 32 Rp 1 1/4, G 1 1/2	EXT-EF-32F		
	Pipe connector DN 25 Rp 1, G 1 1/4	EXT-EF-25F		
	Pipe connector DN 20 Rp 3/4, G 1	EXT-EF-20F		
	Pipe connector DN 15 Rp 1/2, G 3/4	EXT-EF-15F		
	MID accessory kit EV DN 50	EXT-EF-50C		
	MID accessory kit EV DN 40	EXT-EF-40C		
	MID accessory kit EV DN 32	EXT-EF-32C		
	MID accessory kit EV DN 25	EXT-EF-25C		
	MID accessory kit EV DN 20	EXT-EF-20C		
	MID accessory kit EV DN 15	EXT-EF-15C		
Mechanical accessories	Description	Туре		
	Converter M-Bus	G-22PEM-A01		
Gateways	Description	Туре		
	Sensor module MID thermal energy meter DN 50	R-22PEM-0UH		
	Sensor module MID thermal energy meter DN 40	R-22PEM-0UG		
	Sensor module MID thermal energy meter DN 32	R-22PEM-0UF		
	Sensor module MID thermal energy meter DN 25	R-22PEM-0UE		
	Sensor module MID thermal energy meter DN 20	R-22PEM-0UD		
	Sensor module MID thermal energy meter DN 15	R-22PEM-0UC		
Spare parts	Description	Туре		
essories				
	Insulation shell for EPIV / Belimo Energy Valve™ DN 3250	Z-INSH32		
	Insulation shell for EPIV / Belimo Energy Valve™ DN 1525	Z-INSH15		

Electrical installation

Supply from isolating transformer.

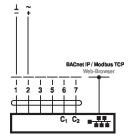
Parallel connection of other actuators possible. Observe the performance data.

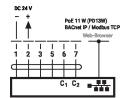
The wiring of the line for BACnet MS/TP / Modbus RTU is to be carried out in accordance with applicable RS-485 regulations.


Modbus / BACnet: Supply and communication are not galvanically isolated. Connect earth signal of the devices with one another.

Sensor connection: An additional sensor can optionally be connected to the thermal energy meter. This can be a passive resistance sensor Pt1000, Ni1000, NTC10k (10k2), an active sensor with output DC 0...10 V or a switching contact. Thus the analogue signal of the sensor can be easily digitised with the thermal energy meter and transferred to the corresponding bus system.

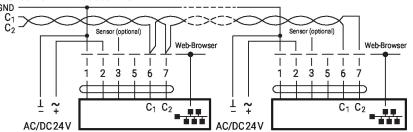
Analogue output: An analogue output (wire 5) is available on the thermal energy meter. It can be selected as DC 0...10 V, DC 0.5...10 V or DC 2...10 V. For example, the flow rate or the temperature of the temperature sensor T1/T2 can be output as an analogue value.



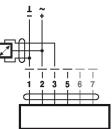

Conventional operation

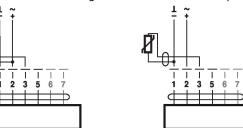
BACnet IP / Modbus TCP

PoE with BACnet IP / Modbus TCP



Cable colours: 1 = black

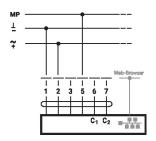

- 1 = black
- 2 = red
- 3 = white 5 = orange
- 6 = pink
- 7 ----
- 7 = grey



 $C_1 = D_- = A$ $C_2 = D_+ = B$

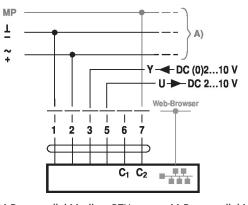
Connection with active sensor

Connection with switching contact Connection with passive sensor

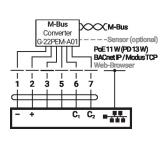


Functions

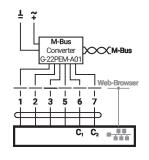
Functions with specific parameters (Parametrisation necessary)

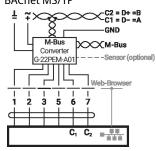

MP-Bus, supply via 3-wire connection

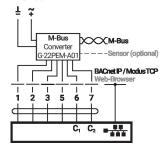
MP-Bus via 2-wire connection, local power supply



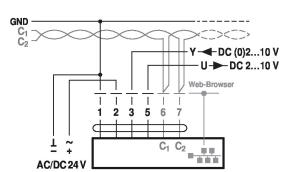
C₁ C₂


MP-Bus with analog setpoint (hybrid mode)

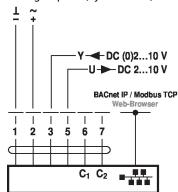

M-Bus parallel Modbus TCP or BACnet IP with PoE

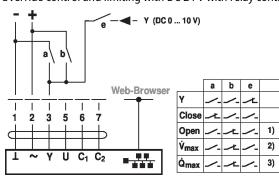

M-Bus via Converter M-Bus

M-Bus parallel Modbus RTU or BACnet MS/TP

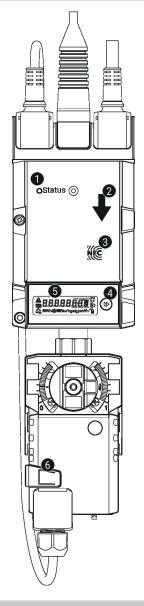


M-Bus parallel Modbus TCP or BACnet IP




BACnet MS/TP / Modbus RTU with analog setpoint (hybrid mode)

BACnet IP / Modbus TCP with analog setpoint (hybrid mode)


Override control and limiting with DC 24 V with relay contacts (with conventional control or hybrid mode)

- 1) Position control
- 2) Flow control
- 3) Power control

Operating controls and indicators

1 LED display green

On: Device starting up Flashing: In operation (Power ok)

Off: No power

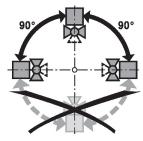
2 Flow direction

3 NFC interface

4 Operating button

5 Display

6 Manual override button


Press button: Gear train disengages, motor stops, manual override possible

Release button: Gear train engages, standard mode

Installation notes

Recommended installation positions

The ball valve can be installed upright to horizontal. The ball valve may not be installed in a hanging position, i.e. with the spindle pointing downwards.

Installation position in return

Installation in the return is recommended.

Water quality requirements

The water quality requirements specified in VDI 2035 must be adhered to.

Belimo valves are regulating devices. For the valves to function correctly in the long term, they must be kept free from particle debris (e.g. welding beads during installation work). The installation of a suitable strainer is recommended.

Servicing

Ball valves, rotary actuators and sensors are maintenance-free.

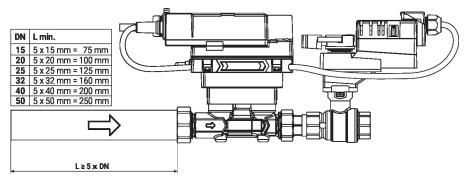
Before any service work on the control element is carried out, it is essential to isolate the rotary actuator from the power supply (by unplugging the electrical cable if necessary). Any pumps in the part of the piping system concerned must also be switched off and the appropriate slide valves closed (allow all components to cool down first if necessary and always reduce the system pressure to ambient pressure level).

The system must not be returned to service until the ball valve and the rotary actuator have been correctly reassembled in accordance with the instructions and the pipeline has been refilled by professionally trained personnel.

Flow direction

The direction of flow, specified by an arrow on the housing, is to be complied with, since otherwise the flow rate will be measured incorrectly.

Cleaning of pipes

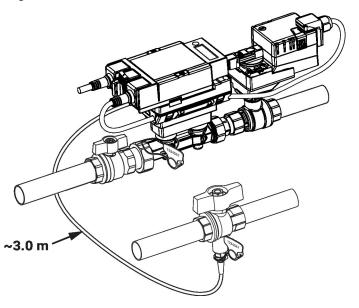

Before installing the thermal energy meter, the circuit must be thoroughly rinsed to remove impurities.

Prevention of stresses

The thermal energy meter must not be subjected to excessive stress caused by pipes or fittings.

Inlet section

In order to achieve the specified measuring accuracy, a flow-calming section or inflow section in the direction of the flow is to be provided upstream from the flow sensor. Its dimensions should be at least 5x DN.


Mounting of immersion sleeve and temperature sensor

The valve is equipped with two fully-wired temperature sensors.

- \bullet T2: This sensor is installed in the thermal energy meter.
- T1: This sensor is installed on site ahead of the consumer (valve in the return line) or after the consumer (valve in the supply line).

Note

The cables between valve unit and temperature sensors may not be either shortened or lengthened.

Split installation

The valve-actuator combination may be mounted separately from the thermal energy meter. The direction of flow must be observed.

General notes

Minimum differential pressure (pressure drop)

The minimum required differential pressure (pressure drop through the valve) for achieving the desired volumetric flow V'max can be calculated with the aid of the theoretical kvs value (see type overview) and the below-mentioned formula. The calculated value is dependent on the required maximum volumetric flow V'max. Higher differential pressures are compensated for automatically by the valve.

Formula

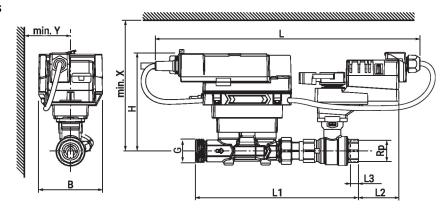
$$\Delta p_{min} = 100 \text{ x} \left(\frac{\dot{V}_{max}}{k_{vs \text{ theor.}}} \right)^2 \begin{bmatrix} \Delta p_{min} : kPa \\ \dot{V}_{max} : m^3/h \\ k_{vs \text{ theor.}} : m^3/h \end{bmatrix}$$

Example (DN 25 with the desired maximum flow rate = 50% V'nom)

EV025R2+MID kvs theor. = 8.1 m³/h V'nom = 58.3 l/min

50% * 58.3 l/min = 29.15 l/min = 1.75 m³/h

$$\Delta p_{min} = 100 \text{ x} \left(\frac{V'_{max}}{k_{vs \text{ theor.}}} \right)^2 = 100 \text{ x} \left(\frac{1.75 \text{ m}^3/h}{8.1 \text{ m}^3/h} \right)^2 = 4.7 \text{ kPa}$$


Behaviour in case of sensor failure

In case of a flow sensor error, the Energy Valve will switch from either power or flow control to position control (Delta-T manger will be deactivated).

Once the error disappears, the Energy Valve will switch back to the normal control setting (Delta-T manager activated)

Dimensions

Dimensional drawings

Туре	DN	Rp	G	L	L1	L2	L3	В	Н	X	Y	Д
		["]	["]	[mm]	/ kg \							
EV015R2+MID	15	1/2	3/4	362	195	62	13	90	136	206	80	2.1
EV020R2+MID	20	3/4	1	374	230	57	14	90	137	207	80	2.8
EV025R2+MID	25	1	1 1/4	381	246	51	16	90	140	210	80	2.7
EV032R2+MID	32	1 1/4	1 1/2	398	267	50	19	90	143	213	80	4.0
EV040R2+MID	40	1 1/2	2	404	280	45	19	90	147	217	80	4.8
EV050R2+MID	50	2	2 1/2	421	294	49	22	90	152	222	80	5.2

Further documentation

- Data sheet thermal energy meter
- Overview MP Cooperation Partners
- Tool connections
- General notes for project planning
- Instruction Webserver
- Description Data-Pool Values
- BACnet Interface description
- Modbus Interface description
- Introduction to MP-Bus Technology